Problem3:(5 points) A Cascade Delta-Sigma ADC is presented in Figure 3.
(a) Derive the expressions for $V_{1}(z)$ and $V_{2}(z)$ in terms of U, E_{1} and E_{2} for the system.
(b) Show that if the cancellation logic implements
$V(z)=\left(2^{*} z^{-1}-z^{-2}\right) \cdot V_{1}(z)+\left(1-z^{-1}\right)^{2} \cdot V_{2}(z)$
then the output $\mathrm{V}(\mathrm{z})$ consists of the (essentially) unfiltered input $\mathrm{U}(\mathrm{z})$ plus the second order shaped $E_{2}(z)$ and the quantization noise of the one-bit quantizer $E_{1}(z)$ has been cancelled.

(a) From the block diagram,

$$
\left(\left(U-V_{1} /\left(1-z^{-1}\right)-V_{1}\right)\left(z^{-1} /\left(1-z^{-1}\right)\right)+E_{1}=V_{1}\right.
$$

Solving,

$$
z^{-1} \cdot U+\left(1-z^{-1}\right)^{2} \cdot E_{1}=\left(1-2 z^{-1}+z^{-2}+z^{-1}+z^{-1}-z^{-2}\right) \cdot V_{1}
$$

$$
V_{1}(z)=z^{-1} \cdot U(z)+\left(1-z^{-1}\right)^{2} \cdot E_{1}(z)
$$

Also,

$$
V_{2}=Y_{i 2}+E_{2}
$$

Solving,

$$
\begin{aligned}
& V_{2=}\left(\left(U-V_{1}\right) /\left(1-z^{-1}\right)-V_{1}\right) \cdot\left(z^{-1} /\left(1-z^{-1}\right)\right)+E_{2} \\
& V_{2}=z^{-1} /\left(1-z^{-1}\right)^{2} \cdot U-\left(2-z^{-1}\right) z^{-1} /\left(1-z^{-1}\right)^{2} \cdot V_{1}+E_{2} \\
& V_{2}=\left(z^{-1}-2 z^{-2}+z^{-3}\right) /\left(1-z^{-1}\right)^{2} \cdot U+z^{-1}\left(2-z^{-1}\right) \cdot E_{1}+E_{2} \\
& V_{2}(z)=z^{-1} \cdot U(z)+z^{-1}\left(2-z^{-1}\right) \cdot E_{1}(z)+E_{2}(z)
\end{aligned}
$$

(b) If the cancellation logic is implemented, then

$$
V=\left(2 z^{-1}-z^{-2}\right) \cdot V_{1}+\left(1-z^{-1}\right)^{2} \cdot V_{2}
$$

Substituting for V_{2} from (1),

$$
\begin{aligned}
& =\left(2 z^{-1}-z^{-2}\right) \cdot V_{1}+\left(1-z^{-1}\right)^{2}\left[z^{-1} /\left(1-z^{-1}\right)^{2} \cdot U-\left(2-z^{-1}\right) z^{-1} /\left(1-z^{-1}\right)^{2} \cdot V_{1}+E_{2}\right] \\
& V(z)=z^{-1} \cdot U(z)\left(1-z^{-1}\right)^{2} \cdot E_{2}(z)
\end{aligned}
$$

Problem3: (10 points) A Delta-Sigma ADC is presented in figure 3.
(a) Derive the expression for $\mathrm{V}(\mathrm{z})$ in function of the input signal $\mathrm{U}(\mathrm{z})$ and the quantization noise $\mathrm{E}(\mathrm{z})$ and find the signal transfer function $\operatorname{STF}(z)$ and the noise transfer function NTF(z)
(b) Given that the Signal-to-noise-ratio $S N R$ is -22.5 dB for $\mathrm{OSR}=1$, what is the SNR when OSR changes up to 16 ?

(a) $\mathrm{V}(\mathrm{z})=\mathrm{U}(\mathrm{z})+\mathrm{Y}(\mathrm{z})+\mathrm{E}(\mathrm{z})$

Also, from the figure,
$Y(z)=E(z)\left[-4 z^{-1}+6 z^{-2}-4 z^{-3}+z^{-4}\right]$
$V(z)=U(z)+E(z)\left[1-4 z^{-1}+6 z^{-2}-4 z^{-3}+z^{-4}\right]$
$V(z)=U(z)+E(z)\left(1-z^{-1}\right)^{4}$

$$
\operatorname{STF}(z)=1 \quad, \quad N T F(z)=\left(1-z^{-1}\right)^{4}
$$

(b) Since this is a fourth order modulator, the improvement in SNR is given by $(20 L+10) \log (O S R)$ where L is the order of the modulator. Hence, the improvement in this case is obtained using $L=4, O S R=16$.
$S N R=-22.5+(20 \mathrm{~L}+10) \log (\mathrm{OSR})=-22.5+90 \log (16)$

$$
S N R=85.9 \mathrm{~dB}
$$

